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This publication is for guidance and gives an overview regarding the assessment of impact of gas 

quality on engine performance. The publication and its contents have been provided for 

informational purposes only and is not advice on or a recommendation of any of the matters 

described herein. CIMAC makes no representations or warranties express or implied, regarding the 

accuracy, adequacy, reasonableness or completeness of the information, assumptions or analysis 

contained herein or in any supplemental materials, and CIMAC accepts no liability in connection 

therewith. 

 

The first edition of this CIMAC Position Paper was approved by the members of the CIMAC WG17 

‘Gas Engines’ at its meeting on April 15
th

, 2015. 
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1 Introduction  
 

This position paper describes how gas engines are influenced by the quality of the gaseous fuel 

provided.  This topic is becoming increasingly important as highly fluctuating renewable energy 

resources call for quick reacting and reliable back-up power often provided by gas engines. 

Important aspects of the quality of a gas, in addition to the heating value and the Wobbe Index, 

are: the composition of the combustibles which influences the combustion behaviour and knocking 

characteristics, the rate of change of the gas composition with time, and the concentration of 

impurities, for example sulphur. The knock characteristics of a gaseous fuel can be calculated for a 

given composition and the calculated Methane Number (MN) indicates the resistance of the given 

fuel to end gas knock. The Methane Number is comparable to the octane number for liquid fuels, 

which is typically used with gasoline fuels for passenger cars. 

Information on the following topics can be found in other CIMAC Working Group 17 position 

papers: 

■ Information concerning the application of gas engines in the marine industry [PDF] 

(December 2013) 

■ Transient response behavior of gas engines. [PDF] (April 2011) 

■ The influence of ambient conditions on the performance of gas engines. [PDF] (March 

2009) 

■ Information about the influence of ammonia in the fuel gas on NOx emissions. [PDF] 

(December 2008) 

■ Information about the use of liquefied natural gas as an engine fuel. [PDF] (December 

2008) 

The composition of pipeline quality gas is changing due to the increasing admixture of biogases, 

synthetic gases, hydrogen, new sources of natural gas and liquefied natural gas.  It is therefore 

becoming ever more important to have a good understanding of the knock resistance of the 

gaseous fuel that is fed to a given engine. Special gases like biogases, synthetic gases, well head 

gases or associated petroleum gases have compositions that differ greatly from the composition of 

historic pipeline quality natural gas. The knock resistance of these special gases can only be 

determined correctly when the effect of each constituent of the gas is taken into account correctly. 

Since gas engines are designed for an expected window of specific gas composition it is important 

that the actual gaseous fuel provided to a given engine lies within this window. Where the fuel 

composition falls outside of the design window, reduced power or shut down of the engine by the 

control system may result.  In the worst case damage to the engine might occur.  The presence of 

contaminants in a gaseous fuel affects engine wear, oil degradation and emissions while the 

composition of the combustibles affects the power, efficiency and emissions of the engine.  Where 

fuel properties are not within the design specification, the engine operator will not be able to 

achieve the expected performance and revenue.  

In Section 2 of this paper theoretical information about the effect of gas quality on engine 

performance is given.  Section 3 provides information regarding engine knock and knocking 

characteristics of gaseous fuels.  Section 4 gives an overview of existing MN calculation methods 

and their limitations. Section 5 provides information regarding current and historic pipeline gas 

composition, as well as some discussion of future Wobbe Index and knocking characteristics 

based on proposed changes to gas pipeline supply sources. Section 6 concludes with the CIMAC 
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position on gas composition, Methane Number calculation programs, and required gas standards 

as regards the use of natural gas in reciprocating engines.  

Variations in gaseous fuel composition present a number of challenges for engine operation.  The 

change of the composition of hydrocarbons and inert gases like carbon dioxide and nitrogen from 

biogas admixture influences the ignitability and the combustion behaviour of the gas mixture.  

When variable quality fuels are provided, the engine controller must adapt operating parameters to 

prevent poor combustion, misfire or engine knocking.  Changing combustion parameters influence 

the exhaust emissions, the cylinder peak pressure and the knock margin.  High frequency 

fluctuations have an impact on the engine load controller and can result in unstable operation and 

varying emissions levels. Even low frequency variations in fuel quality have an impact on engine 

diagnostics and operation as regards the ability to achieve maximum efficiency, minimum 

emissions levels and optimum loading performance.  The wider the variations are from the 

expected fuel quality, the more difficult it is for the engine controller to maintain acceptable engine 

operation. 

The variation in the heating value impacts mainly the load controller of the engine. When the 

heating value increases the engine load control will be more aggressive than intended and this can 

lead to over fuelling during load increases and over-compensation when operating on variable 

load. At low engine loads the control of the gas quantity can be limited if the fuel heating value is 

greater than that for which the fuel system was designed.  If the heating value decreases over time 

the engine load control can become slow and this may impact the capability of the system to take 

on load effectively.  If the heating value is too low the capacity of the gas control system may 

restrict the available power output of the engine. 

2 Impact of Gas Quality Variation 
 

The Methane Number of the gas is of extreme importance for optimized engine operation. The 

knock resistance of the fuel must be known to set the operating space of the engine and the 

Methane Number available defines the engine calibration and component configuration to a high 

degree. When the Methane Number fluctuates the engine operating space changes and thus the 

engine performance deviates from the optimum design condition.  Depending on how the Methane 

Number fluctuates, both the operating knock margin and ignition capability of the engine can be 

affected. 

When sulphur appears in the gas supplied to the engine, the direct result is the emission of sulphur 

dioxide in the engine exhaust.  Sulphur is present in some natural gas sources and biogas 

admixed to the natural gas, but is also added as an odorant for safety reasons.  In addition to the 

emissions concerns surrounding sulphur containing fuels, the acids formed from sulphur have an 

impact on engine parts, lube oil lifetime and after-treatment components, such as exhaust oxygen 

sensors, catalytic converters and heat recovery systems.  A higher content of sulphur results in 

rapid degradation of flue gas abatement systems with the consequences of higher emissions, 

reduced lifetime and higher operating costs. 
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3 Impact of Methane Number on Engine Performance 
 

During normal spark ignited (or diesel pilot ignited) gas engine operation, a compressed mixture of 

fuel and air is ignited at a central point in the engine cylinder.  Following this ignition event, a flame 

moves outwards through the cylinder, converting the chemical energy stored in the fuel into 

thermal energy.  The release of thermal energy raises the pressure and temperature of the gases 

in the cylinder, which is used to drive the piston and produce work at the engine output shaft.  

Throughout the normal combustion process, the gas mixture in the cylinder which has not yet been 

consumed by the flame is driven to greater and greater pressures and temperatures by the 

advancing flame front.  If the temperature and pressure of the unburned mixture reaches a critical 

level, the mixture will auto-ignite, causing a very rapid release of the chemical energy of the fuel.  

This auto-ignition process is known as engine knock.  Engine knock causes a degradation of 

engine performance, increases emission levels and results in damage to engine hardware that 

cannot be tolerated. 

Engine performance and emissions are generally optimum at the highest feasible temperatures 

and pressures; increasing the unburned gas temperature and pressure above their critical level will 

result in engine knock.  The Methane Number and Octane Number are both measures of how 

resistant a given fuel is to auto-ignition, and thus how resistant an engine will be to engine knock 

when operated on the given fuel.  Most people are well aware that high performance and high 

efficiency automotive engines require high Octane Number fuel, and the same is true of stationary 

natural gas engines.  Natural gas generally has a very high resistance to engine knock (an Octane 

Number of ~130), and this resistance is key to the ability of modern gas engines to reach high 

performance with low emissions.  If the knock resistance of available natural gas is reduced, 

existing engines will be forced to operate below their design capabilities in terms of efficiency, 

power density and emissions.  In order to avoid engine failure, a given engine installation is 

typically designed and adjusted for the least knock resistant fuel on which it will be expected to 

operate.  For this reason even the engine must be adjusted to accommodate the lowest expected 

Methane Number fuel being provided at a given site will cause a very predictable increase in fuel 

consumption by reciprocating natural gas engines and an associated rise in greenhouse gas 

emissions. 

4 Methane Number calculation  
 

Today there are many licensed MN calculation programs in use. The most widespread programs 

are based on the AVL method.  Some gas suppliers and engine manufacturers use their own 

algorithm, mostly based on the data of the AVL work and the final report from 1971 [1]. The lack of 

information in the AVL work as regards the impact of higher hydrocarbons (hydrocarbon fuels with 

more than 4 carbon atoms per molecule) pressed some engine OEM’s to implement modifications 

to the basic calculations based on their own tests with higher hydrocarbons in order to cover a 

wider range of real world fuel compositions. 
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The Methane Number calculated with the different methods differs noticeably due to the different 

algorithms employed, as shown in Figure 1 [2].  For today’s pipeline gas compositions the methods 

show minor differences in the calculated MN, but if higher hydrocarbons from other sources (for 

example LNG terminals) are added, differences of up to 14 MN are found.  Issues also arise if 

hydrogen is added to the natural gas as the various available MN calculations are impacted 

differently by hydrogen.  For the gas quality harmonization in Europe, EUROMOT recommended 

the MWM MN method, which will be offered as an open source calculation program, if accepted.  

As of today, this is the only freely available, proven method which considers the impact of higher 

hydrocarbons and also admixtures of hydrogen.  The methodology of the program is described in 

Annex A of the CEN/TC234EN16726.  New methodologies which are based on gas properties like 

reaction time for ignition are under investigation and could in the future perhaps reflect the gas 

properties in a better way than today’s methodologies. 

5 Gas Quality Today and in the Future 
 

Natural gas will play a major role as a future energy source, due to the high available quantity for 

decades to come and the positive impact on emissions (CO2- reduction by >20%, NOx and 

particulate reduction as well) compared to liquid fuels.  LNG imports, bio-methane and hydrogen 

admixture from renewable energy will also change the future composition of pipeline natural gas. 

Gas quality is linked to the source of the gas supply.  For this reason, the limits for gas properties 

in countries in the European Union differ substantially. Figure 2 shows the actual values and 

proposed rules for the Wobbe Index (Ws) in Europe [3]. This figure does not imply that a given 

customer will experience the actual range shown, as locally the gas composition can be relatively 

constant. The gas specification in most countries allows a higher variation for Ws.  Figure 3 shows 

the actual Methane Number range for 5 countries in Europe, as well as typical ranges for Japan 

and the United States [4 and 6]. 

 

Fig. 2: Actual values for Ws and proposed 

rules  Fig. 3: MN range for different 

countries 

Impurities in pipeline gas, mainly sulphur from the source but also from odorant, are today in most 

countries less than 5 mg/m³.  In some exceptional gases, values as high as 20 mg/m³ are seen. 

The EASEEgas (European Association for the Streamlining of Energy Exchange) have proposed a 

limit of 30 mg/m³.  
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In today’s gas specification there are no limits for the speed of variation of the parameters and 

Methane Number is not even covered by the specification.  The given limit values for lower heating 

value (LHV) and Wobbe Index do not correlate to the MN with any given composition, as 

demonstrated in Figure 4 [5], but it can be seen that the proposed upper level of 54 for the Wobbe 

Index results in a Methane Number of less than 65, which is unacceptable for most high efficiency 

natural gas engines.  

   

Fig. 4: Methane number vs. Wobbe Index        Fig. 5: impact of hydrogen on HV, Ws and density 

The higher hydrocarbons (C4 and C4+) sometimes found in LNG fuel will lower the MN and the 

admixture of hydrogen has a comparable effect.  A 10% limit for hydrogen is under discussion from 

the gas industry while manufacturers of gas turbines and engines have specified limits between 

1% and 5%.  Even with 10% admixture the resulting density of the mixed gas will be for some base 

gases out of the current specification for density ratio (0.55<d<0.75) as shown in Fig.5 [7].  The 

admixture of bio-methane can bring additional impurities such as siloxanes and sulphur to the gas 

network which would have a negative impact on all consumers, but would have especially profound 

effects for gas engines. 

6 Conclusions 
 

Gas engines are producing ecologically friendly and economically sound electrical energy and in 

CHP (Combined Heat and Power) and therefore their popularity increases world-wide. Also for the 

changing electricity market, with increasing energy from renewables, gas engines provide a 

growing portion of the required back-up infrastructure due to their operational flexibility. 

Gas engines can accept, within their design limits, a wide range of gas quality, but fluctuation of 

the fuel quality harms their performance. Rapid changes present serious engine control challenges 

and can have a substantial impact on engine performance and emissions. The most important fuel 

property for gas engines is the knocking characteristic (Methane Number). Highly developed 

engines are designed for specific MN ranges like MN > 80 for Western Europe and MN around 65 

for Japan, to achieve a high power density, low emission levels, and excellent fuel efficiency and 

economy for the expected engine conditions and fuel. To ensure reliable and economic operation 

of gas engines the knocking characteristic of natural gas has to be addressed in the natural gas 

specification. Impurities such as sulphur or siloxanes in natural gas from biogas admixture have a 

negative impact on the engine condition and the required maintenance.  

To fulfil the expected requirements like: 



  

CIMAC WG17 Gas Quality on Gas Engine Performance, 2015-07 (1st edition) Page 8 

■ Safe and reliable operation 

■ Economic operation 

■ Ecologically friendly with low emissions 

■ Long maintenance intervals 

well-defined fuel and specifications are mandatory: 

■ MN should be close to 80 or higher for highest efficiency, economy and lowest GHG 

emissions 

■ For the installed fleet, MN must be maintained near the historical value as this will in most 

cases be the design point of the engines 

■ a standard calculation method for MN needs to be defined 

■ Wobbe Index, Methane Number and flame speed at the operating site must be held within 

a narrow range for stable operation, low emissions and  high economy 

■ Fluctuation of gas parameters only over long period of time (low frequency) is required for 

stable operation 

■ Impurities in the gas, especially sulphur should be as low as possible to reduce SO2- 

pollution to the environment and to reduce deterioration of abatement systems  

 

With a well-defined high quality pipeline gas the gas engines will perform as expected by their 

users, safe and reliable, preserving the environment with economically and ecologically friendly 

operation. 
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