Feb. 29. 2015

CIMAC Cascades Visual combustion studies for Dual Fuel and Gas Engines

Prof. Dr. K. Takasaki & Dr. D. Tsuru Kyushu University, Japan

Contents

1. Real conditions of natural gas engines in marine use

2. Large sized RCEM: Rapid Compression and Expansion Machine

3. Image of lean-burn combustion (Otto-cycle type gas engine)

4. Image of GI (high pressure Gas Injection) combustion

- Natural gas
- Marine diesel oil • C16H34 • 16 CO2 + 17 H2O + Q
 - 12 CH4 · · 12 CO2 +24 H2O + Q •

Natural gas fueled ships in service

About 50 ships in North Europe driven by medium-speed 4-stroke lean-burn type gas engines (ferry, off-shore supply vessel, etc.).

オフショア支援船

ケミカルタンカー

重油バンカー船 @オランダ・ロッテルダム港

観光船 @韓国·仁川港

高速フェリー @豪州にて海上公試 (アルゼンチン⇔ウルグアイ航路)

@スウェーデン・ストックホル/法

Natural gas fueled ships from now

including large ships driven by low-speed 2-stroke natural gas engines.

• United European Car Carriers (UECC) jointly owned by NYK and Wallenius Lines has ordered KHI two PCCs propelled by MAN low-speed ME-GI gas (DF) engine. (for voyage in European ECA)

NYKとWallenius共同出資のUECC社が、MANの低速
 2ストGI(DF)エンジンを搭載した自動車運搬船を
 川崎重工に発注(欧州内ECAに投入予定)。

• TOTE Line has ordered 3,100TEU container ships propelled by MAN low-speed ME-GI gas (DF) engine. (Route: Florida⇔ Puerto Rico)

・米国内航船社TOTE社が、MANの低速2ストGI(DF) エンジンを搭載した3,100TEUのコンテナ船を発注 (フロリダ⇔プエトリコ航路に投入予定)

- Development of LNG-fuelled tug-boat by NYK Group
 2013~
 (ClassNK is supporting development of not only vessel itself but also medium-speed DF engine)
- ・負荷変動の激しいタグボートをLNG燃料化(NYKグループ)(政府と日本海事協会の支援)

Table 1 Categorization of marine gas engines

	Direct coupling	Electric drive
Medium-speed 4-st.	Existing	Popular
Low-speed 2-st.	All	Nonexistent
	Mono-fuel	DF (Dual Fuel)
Medium-speed 4-st.	Existing	Popular
Low-speed 2-st.	Nonexistent	All

In case of **DF**, fuel can be switched instantly from gas to heavy fuel in an emergency like heavy knocking or gas-leak.

	Lean-burn (pre-mixed) (low-pressure gas supply)	GI (Gas Injection) (high press. gas injection)
Medium-speed 4-st.	Currently all	Possible but not yet applied
Low-speed 2-st.	Existing	Existing
	Otto-cycle type gas engine	Diesel-cycle type gas engine

Possibility of abnormal combustion for lean burn gas engine Wartsila company's data

Contents

1. Real conditions of natural gas engines in marine use

2. Large sized RCEM: Rapid Compression and Expansion Machine

- 3. Image of lean-burn combustion (Otto-cycle type gas engine)
- 4. Image of GI (high pressure Gas Injection) combustion

Laboratory of Engine and combustion, Kyushu Univ., Japan

Gas engine visual test facility, RCEM

000

Construction and function of RCEM

RCEM (Rapid Compression and Expansion Machine)

Supercharged condition is realized by **two-stage compression**. Frequent experiments in a short time are possible by **single-shot function**. Pmax limit: **20 MPa**, Speed: **300 rpm**, Glass window: 200 mm wide or 240 mm dia.

Contents

- 1. Real conditions of natural gas engines in marine use
- 2. Large sized RCEM: Rapid Compression and Expansion Machine
- 3. Image of lean-burn combustion (Otto-cycle type gas engine)
- 4. Image of **GI** (high pressure **G**as **I**njection) combustion

How is the flame propagation and abnormal combustion in <u>lean-burn type gas engine</u>? Abnormal combustion caused by lubricating oil (Shadowgraph technique shows burning area black.)

Without lubricating oil

≈ 0.5 g/kWh

ATDC Lambda 1.9

Lambda 2.1

Lambda 2.3

Lub. oil particle could be an origin of self-ignition. And it grows faster to be big flame in richer mixture.

Contents

- 1. Real conditions of natural gas engines in marine use
- 2. Large sized RCEM: Rapid Compression and Expansion Machine
- 3. Image of lean-burn combustion (Otto-cycle type gas engine)
- 4. Image of GI (high pressure Gas Injection) combustion

GI (**G**as Injection) type combustion • • named 'Diesel cycle gas engine' (Diffusive combustion of high pressure gas jet ignited by pilot fuel.)

Merits • Free from knocking & abnormal combustion (Any MN is allowable.) Lower methane slip

Combustion chamber for top view from 240 mm dia. full window

Mirror on top of piston for Schlieren technique

Visualization of fuel mass fraction in gas jet applying CFD

8

Lower gas pressure case shows longer burn-up length of flame.

d: 4x **φ0.7 31.5MPa**

d: 4x **φ1.0**

22.5MPa

12 16 20 [deg.ATDC] Rate of Heat Release [KJ/deg.] 30 Total Heat Release [KJ] 20 ф1.0 22.5MPa ф0.7 31.5MPa 10 20 40 0 60 -20 21 -10

Introduction of new theme 'Hydrogen-admixture to natural gas for gas engines' sponsored by ClassNK Direct

200 mm wide window

No.052 **80% CH₄ - 20% H₂ (F2)** Inj. Hole Dia. 1.2 [mm] Inj. Press. **26.4**[MPa]

No.043 **70% CH₄ - 30% H₂ (F2)** Inj. Hole Dia. 1.2 [mm] Inj. Press. **27.6** [MPa]

No.021 **50% CH₄ - 50% H₂ (F2)** Inj. Hole Dia. 1.2 [mm] Inj. Press. **30.7**[MPa]

% = vol. %

Improvement of diffusive combustion by adding hydrogen to methane (Pc: 8 MPa)

No.469 **CH₄** Inj. Hole Dia. 1.0 [mm] Inj. Press. **30.1** [MPa] No.050 **80% CH₄ - 20% H₂** Inj. Hole Dia. 1.2 [mm] Inj. Press. **26.5** [MPa] No.039 **70% CH₄ - 30% H₂** Inj. Hole Dia. 1.2 [mm] Inj. Press. **28** [MPa] No.026 **50% CH₄ - 50% H₂** Inj. Hole Dia. 1.2 [mm] Inj. Press. **31.2** [MPa]

24

Further research theme 'Hydrogen-admixture to natural gas for gas engines'

Today,

- 1. Real conditions of natural gas engines in marine use
- 2. Large sized RCEM: Rapid Compression and Expansion Machine
- 3. Image of lean-burn combustion (Otto-cycle type gas engine)
- 4. Image of GI (high pressure Gas Injection) combustion
- have been introduced as

Visual combustion studies for Dual Fuel and Gas Engines by Kyushu Univ. Japan

Thank you for your kind attention