Development of a Gas Propulsion System for Harbour Tug Applications

Dr. Wolfgang Fimml

FEBRUARY 26 – 27, 2015 | GRAZ, AUSTRIA

Power. Passion. Partnership.

© MTU Friedrichshafen GmbH | All rights reserved | STRICTLY CONFIDENTIAL

Off-Highway Applications Requirements

Page 2 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Gas for mobile applications Key Drivers

* LNG: Liquified Natural Gas

** ECA: Emission Controlled Area

Page 3 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Engine Concepts for Marine Applications What are the options for IMO3?

Page 4 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Drivers for Gas – Emissions of Green House Gases Comparison of Gas & Diesel Engines

Page 5 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Off Highway Applications Example: Marine Engine for Harbour Tug

Source: Damen - ASD TUG 2810

Page 6 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Gas Propulsion System for Harbour Tug Applications

Example : Design of the RSD TUG 2512 CNG

Source: Damen

mtu

Page 7 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Engine Design S4000 Gas Engine for Marine Applications

Engineering Targets:

Application	Marine Commercial
Emissions	IMO3 / EPA T4 & low Methane Slip
Base-Engine	S4000 M63 Bore: 170 mm Stroke: 210 mm
Combustion	Otto-Gas (λ>1)
Engine Mapping	like M63
Engine Dynamics	like M63
Safety concept	IGF-Code: Gas-safe

Multi Point Injection (MPI)

→ Double walled gas supply

Page 8 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Engine Design Multi Point Injection with Electric Valves

High flexibility to influence the air / gas mixture with MPI-valves:

- Begin of injection
- Gas rail pressure

Flexible injection strategy:

 Opportunity to optimize mixture quality for combustion stability at each engine operating point from cycle to cycle

Page 9 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Thermodynamic Design Required Engine Dynamics

Data logging in a TUG boat - "Standard" - TUG Manoeuvers

Typical TUG manoeuvre: acceleration along propeller curve.

Source: Damen

Page 10 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Thermodynamic Design Required Engine Dynamics

"Worst Case" TUG Manoeuver - Emergency Crash Stop

1. Start condition: Sailing full speed ahead Engine Speed: maximum Engine Torque: high

- 2. Emergency Stop: Turn the thrusters 180° against original direction
 → thrust reversal
 Engine Speed: high
 Engine Torque: maximum
- 3. Station keeping: Thrusters in neutral position Engine Speed: low Engine Torque: low

Manoeuver Goal: Realization of minimal stopping distance to avoid crash!

Source: Damen

Page 11 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Thermodynamic Design Required Engine Dynamics

Data logging in a TUG boat - "Worst Case" - TUG Manoeuver *

"Worst Case" TUG manoeuvre: Emergency crash stop

* Data from crash stop manoeuvre with DAMEN ASD Tug 2411

Page 12 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Engine Dynamics Investigations of Real Vessel Operation on Test Bed

Simulation of TUG maneuver with ship model \rightarrow Hardware in the Loop

Source: Damen

mt

Page 13 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Engine Dynamics Investigations of Real Vessel Operation on Test Bed

Results: Hardware in the Loop Emergency Crash Stop

Page 14 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

MTU's options for future Marine Applications Diesel and Gas Engines for IMO3

Diesel + SCR

- + proven, established
- + fuel logistics and handling
- complexity: SCR
- operational cost
- limited oil reserves

A A A A A A

- + operational costs
- + engine complexity: lean burn no EAT

Natural Gas

- + global gas reserves
- gas infrastructure
- gas storage system

Diesel and Gas Engines are future fuel options for marine applications!

Page 15 Development of a Gas Propulsion System for Harbour Tug Applications | CIMAC CASCADES 2015 | Fimml | 27.02.2015

Thank you very much for your attention.

Power. Passion. Partnership.

© MTU Friedrichshafen GmbH | All rights reserved | STRICTLY CONFIDENTIAL