Neste

Cimac Cascades 2017 Helsinki

Teemu Sarjovaara, D.Sc.(Tech) Neste R&D, Products

This is what we want to achieve

We want to be Baltic Sea downstream champion We want to grow in the global renewable feedstock-based markets

Neste in numbers

Neste globally

Production:

- Porvoo
- Naantali
- Rotterdam
- Singapore
- Bahrain (joint venture, Neste's share 45%)

Sales and marketing:

- Espoo
- Stockholm
- Tallinn
- Riga
- Vilnius
- St. Petersburg
- Geneva
- Beringen
- Houston
- Toronto
- Singapore

We operate on a global market

A wide range of premium-quality products

NESTE

Cleaner solutions through the years

NESTE

Example: Neste DMB/RMB refining

DMB Production

Produced from low sediment distilled heavy oils and good quality middle distillates -> more processing compared to heavy fuel oils

Excellent test results of Neste's MDO DMB

- Product was delivered to five ships at December 2014
- Total volume ~500 tons
- Tests in different types on engines: main engines, auxiliary engines and boilers
- Based on test, Neste MDO DMB proved to be a high quality product performing excellently as a bunker fuel
- Positive feedback from engine
 manufacturer

Porvoo refinery residue processing

- Residue upgrading to low sulphur FO bunkers

RMG will be the most cost efficient low sulphur Fuel

DMB Viscosity 6 cSt@40 °C Density 870 kg/m3 Pour point max:

- Summer: +10 °C
- Winter: +5 °C

Energy content 42,5MJ/kg Distillate, no residue No Sediment No Asphaltenes No Metals

RMB Viscosity 12cSt@50 °C Density 880 kg/m3 Pour point max: +25 °C

Energy content 42,6MJ/kg Distillate, no residue No Sediment No Asphaltenes No Metals RMG Viscosity 300cSt@50 °C Density 920 kg/m3 Pour point max: +30 °C

Energy content 42,2MJ/kg Carbon Residue 8,0wt-% Low Sediment Low Asphaltenes Low Metals

0,1 % S FO product, typical properties

	Characteristic	Specification ISO 8217 standard	Typical	
	Viscosity, cSt @ 50 °C	Max 380	150-300	-
	Density, kg/m3 @ 15 °C	max 991	920-940	
	CCAI	Max 870	< 870	
	Carbon residue, wt-%	Max 18	< 8	MASTERA
1	Energy content, MJ/kg	Not specified	> 42	
	Total sediment, wt-%	Max 0,1	< 0,1	S
	Metals, mg/kg - Vanadium - Natrium - Aluminium + silicon	Max 350 100 60	< 80 < 10 < 30	

Global leader in renewable diesel

- Annual production capacity 2.4 million tons of Neste Renewable Diesel have been increased to 2.6 Mt
- Production based on Neste's proprietary NEXBTL technology
- Flexible and sustainable raw material base
- In 2016, Neste invested 70% of its R&D costs (total EUR 41 million) in the development of future raw materials, as well as research on NEXBTL technology and renewable products

Our renewable products

Neste Renewable Diesel

- The highest quality diesel in the world
- Produced from waste and residue fats from food processing as well as vegetable oils with Neste's proprietary NEXBTL technology
- Using Neste Renewable Diesel significantly reduces greenhouse gas and tailpipe emissions
- Compatible with existing distribution systems and engines
- Meets even the toughest manufacturer requirements

Fully compatible with fossil diesel

	Conventional fossil diesel	Renewable diesel (HVO) e.g. Neste Renewable Diesel	Fischer-Tropsch (BTL)	Biodiesel (FAME / RME)
Raw material	Crude oil (mineral oil)	Flexible mix of raw materials (waste fats and vegetable oils)	Biomass	Vegetable oils and animal fats (mainly rapeseed oil)
Technology	Traditional refining	Hydrotreating	Gasification & Fischer-Tropsch	Esterification
End product	Hydrocarbon (gasoline, jet fuel, diesel)	Bio-based hydrocarbon (renewable diesel, jet fuel, bionaphta, biopropane)	Bio-based hydrocarbon (renewable gasoline, jet fuel, diesel)	Ester-based, conventional biodiesel
Chemical composition	C _n H _{2n+2} + aromatics	C _n H _{2n+2}	C _n H _{2n+2}	0 II H ₃ C-O-C-R

HVO = Hydrotreated Vegetable Oil, advanced biofuel, i.e. renewable fuel BTL = Biomass to Liquid FAME = Fatty Acid Methyl Ester, conventional biodiesel

RME = Rapeseed Methyl Ester, conventional biodiesel

Low-carbon Neste Renewable Diesel

HVO reduces exhaust gas emissions

Helps to improve local air quality

Exhaust emissions compared to fossil diesel:

- NOx 9%
- Particulates 33%
- CO 24%
- HC

- 30%

Source: Average on over 40 scientific publications

Different biocomponents

Biodiesel (FAME)

- Esther
- Maximum 7% (ISO 8217)
- Challenges: Storage stability, microbial growth, material compatibility, water separation

Renewable diesel (HVO)

- Hydrocarbon
- Not limited (ISO 8217)
- Challenges: No challenges
- Stability similar to fossil diesel, good cold properties, good compatibility, doesn't absorb water

Other renewable hydrocarbons

- E.g. Co-feed
- Not limited (ISO 8217)
- Not different from fossil hydrocarbons

Neste Renewable Diesel (NEXBTL) marine use cases

2011 trial with Rotterdam Port Authority patrol boats running on 100% NEXBTL renewable diesel

NEXBTL renewable diesel is already sold to boat operators in marinas in Germany and Austria

The largest Norwegian ferry operator Fjord1 will start using 100% NEXBTL renewable diesel on two stretches in 2016

The US and Italian navy are already using different renewable diesel blends in their vessels

